
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

Time Complexity and Compression Rate Analysis of

Huffman Coding with Predefined Codes

Wesly Giovano - 135200711

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113520071@mahasiswa.itb.ac.id

Abstract—Huffman coding is widely used as the fundamental of

many compression methods. This study aimed to explore a variety

of Huffman coding which uses predefined codes instead of codes

that depend on the original data to reduce the cost of building

binary tree of Huffman codes. The predefined codes were obtained

by building binary tree based on the frequency of each character

in Brown Corpus. Simple implementations of the encoder and

decoder of Huffman coding were made to analyzed the complexity

of Huffman coding with predefined codes. The time complexity was

found to be O(n) for both encoding and decoding algorithms. To

analyze average compression rate of this variant, four sample texts

with different lengths were analyzed, and the compression rate was

found to be about 42 – 46%.

Keywords—compression rate, Huffman coding, predefined

codes, time complexity.

I. INTRODUCTION

As data size is increasing rapidly with time, storage and

transmission of data is getting more complex and more

expensive. People sought to reduce the cost and time of storing

and transmitting data, hence the notion of data compression was

born.

Data compression is the process of reducing data size by mean

of encoding it so that the resulting size in bits or bytes is smaller

than the original data. The encoded representation must be

decodable, may or may not be exact same with the original one,

also known as lossless and lossy compression. Lossy

compression can be used in data that can be presented similarly

according to human senses such as image or audio, while

lossless compression is commonly used for data that need to be

presented exactly the same as original.

One of the simplest yet widely-used compression method is

Huffman coding. As the name suggests, the method was found

and developed by David A. Huffman in 1951. Huffman coding

later became the basis of many other encoding and compression

methods, such as deflate and JPEG compression. Huffman

coding employs the idea of variable-length coding based on the

original data so that common bit representations can be encoded

into only few bits. Compression of Huffman coding uses

constructed binary tree from original data as the basis of

encoding. In this paper, the author would like to analyze the

effect of changing the binary tree that is constructed for each

data into a fixed binary tree, i.e., predefined codes.

II. THEORETICAL FRAMEWORK

A. Tree

By definition, a tree is a connected undirected graph with no

simple circuits [1]. It is named so because the graph resembles

tree. In a tree, a simple path between any two of its vertices is

always unique.

Fig. 1. Example of tree.

Source: K. H. Rosen, Discrete Mathematics and Its Applications.

A rooted tree is a tree in which one vertex has been designated

as the root and every edge is directed away from the root. If the

children of each internal vertex are ordered, then the tree is an

ordered rooted tree. A rooted tree is called an m-ary tree if every

internal vertex has no more than m children. Hence, a tree with

maximum of two children is a binary tree.

Fig. 2. Example of binary tree.

Source: K. H. Rosen, Discrete Mathematics and Its Applications.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

B. Huffman Coding

Huffman coding is an algorithm to losslessly compress data

by encoding the data into prefix code known as Huffman code.

Prefix codes are codes that bit string of a code for a letter never

occurs as the first part of the bit string for another letter.

Huffman coding’s algorithm takes frequency of each symbol in

the original data as input, constructs a binary tree corresponding

to the frequencies, and lastly encodes the original data into

Huffman code. If the data is a representation of a string or text,

then the input for Huffman coding is frequency of each character

that appears in the original text.

The steps of constructing the binary tree are as follows [2]:

1. Pick two symbols with lowest probability or frequency, e.g.

A and B. The two symbols then are combined into a binary tree

with the root of the symbols’ combination, e.g., AB, and

children of the two symbols, e.g., A and B.

2. Pick next two symbols, including the combined symbols in

step 1, and repeat the same procedure as step 1.

3. Label the binary tree formed consistently: left side with 0

and right side with 1.

4. Labels that the path from the root to target leaf shows the

prefix code for that symbol.

Fig. 3. Example of resulting binary tree in Huffman coding.
Source: R. Munir, lecture slide: Pohon, 2020.

Encoding the original data with Huffman coding is done by

replacing each symbol with corresponding prefix code. For

example, encoding the string “ABACCDA” with Fig. 3. as the

binary results in the Huffman code “0110010101110”. To

decode the encoded data, read the binary code one by one while

following the binary tree’s corresponding edge. Once the leaf in

the binary tree is reached, then the binary code up until the last

one translates to the leaf’s symbol.

Fig. 4. Decoding Huffman code “0110010101110” with binary tree in Fig. 3.

C. Algorithm and Complexity

An algorithm is a method for solving a class of problems on

a computer. The complexity of an algorithm is the cost,

measured in running time, or storage, or whatever units are

relevant, of using the algorithm to solve one of those problems

[3]. Hence, there are two kinds of complexity: time complexity,

denoted as T(n), and space complexity, denoted as S(n) with n

as the data size.

An algorithm typically consists of many different operations,

such as input/output, arithmetic operation, assignment,

comparison, and function calls. In calculating its time

complexity, we only concern some of the operations and

omitting the others [4]. For example, in searching algorithm we

only concern the comparison and omit the others.

Time complexity of an algorithm is often not presented in an

equation of T(n) as the more important question in big data is

“How fast does T(n) grow as the data grow bigger?” For large

value of n, asymptotic time complexity is used. Most common

notation of asymptotic time complexity is Big-O, while the other

less-used notations being Big-Omega and Big-Theta.

Fig. 5. Graph of speed of growth of functions in Big-O notation.

Source: S. Bae, JavaScript Data Structures and Algorithms.

By definition, the algorithm with time complexity T(n) is said

to be Ο(f(n)), or denoted as T(n) = Ο(f(n)), if there exists a

constant C and n0 such that T(n) ≤ C⋅f(n) for n ≥ n0. The function

f(n) should be in simple form without coefficients and other

terms, f(n) is only the most significant term. Some examples of

Ο(f(n)) are Ο(1), Ο(n), Ο(n2), Ο(n!), and Ο(nn). As this

inequality would hold true for any small T(n) with arbitrary large

f(n) such as f(n) = nn, the notation Ο(f(n)) would lose its meaning

with such f(n). For that reason, we need to choose smallest f(n)

that makes the inequality true.

The algorithm with time complexity T(n) is said to be Ω(g(n)),

or denoted as T(n) = Ω(g(n)), if there exists a constant C and n0

such that T(n) ≥ C⋅g(n) for n ≥ n0. Similarly with Big-O, we need

to choose largest g(n) that makes the inequality true.

The algorithm with time complexity T(n) is said to be Θ(h(n)),

or denoted as T(n) = Θ(h(n)), if T(n) = Ο(h(n)) and T(n) =

Ω(h(n)).

If T1(n) = Ο(f(n)) and T2(n) = Ο(g(n)) then:

1. T1(n) + T2(n) = O(f(n)) + O(g(n)) = O(max(f(n), g(n)))

2. T1(n) ⋅ T2(n) = O(f(n)) ⋅ O(g(n)) = O(f(n) ⋅ g(n))

3. Ο(c⋅f(n)) = O(f(n)), where c is a constant.

4. f(n) = O(f(n))

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

III. LIMITATIONS OF THE STUDY

The limitation of the study conducted in this paper include the

sample size is limited (only around six million characters were

analyzed from Brown Corpus), and taken from only American

English texts. For that reason, the study result may be inaccurate

to a certain point. Moreover, the study result would only relevant

to American English texts, and may not be relevant to other

languages and uncommon texts, for example paper of

mathematics study. The result may also be not relevant to texts

that use a lot of uncommon characters or words. The concept of

predefined codes would also fail if a text containing an

undefined symbol in the methodology is to be compressed.

IV. METHODOLOGY

The author used Brown Corpus as the basis to get the

frequency of symbols commonly used in English texts. Brown

Corpus is an electronic collection of text samples of American

English with variety of genres from nonfiction texts to fiction

texts. The Brown Corpus was analyzed by using Python

program with NLTK module. The author also made assumption

that each paragraph is separated by one new line character.

V. HUFFMAN CODING WITH PREDEFINED CODES

A. Construction of Huffman Codes

With the Brown Corpus as reference, the following frequency

table of characters was obtained, shown in Table. 1. The c

column means character while f column means frequency of the

character.

Table. 1. Frequency table of characters, sorted in descending f.

c f c f c f

\s 1003303 I 12543 (2464

e 589980 A 11385 5 2144

t 423392 ' 10983 9 2125

a 371418 S 10322 : 1987

o 357020 x 9379 3 1732

i 333212 H 8015 U 1640

n 332908 C 7776 Y 1610

s 300431 M 7455 ! 1597

r 287337 B 6527 K 1494

h 249219 W 6003 4 1452

l 192894 ; 5566 6 1451

d 184215 1 5182 8 1265

c 139434 P 5162 7 1065

u 127159 q 4862 V 1055

m 113186 j 4748 $ 579

f 106409 ? 4694 Q 241

p 90770 0 4458 / 236

g 89140 z 4431 * 173

w 83137 F 4263 & 166

y 80164 D 4080 % 147

b 66277 N 3798 Z 122

, 58982 R 3663 X 56

. 55578 G 3444 { 16

v 46206 O 3267 } 16

k 29685 L 3252 [2

" 17687 E 3166] 2

\n 15667 J 3008 + 1

T 15568 2 2621

- 15401) 2495

Note: \s means space character and \n means new line character.

The frequency table of the characters were then converted

into probability table, shown in Table. 2 with P column as the

probability value of appearance.

Table. 2. Probability table of characters, sorted in descending P.

c P c P c P

\s 0.1681373 I 0.0021020 (0.0004129

e 0.0988711 A 0.0019079 5 0.0003593

t 0.0709536 ' 0.0018406 9 0.0003561

a 0.0622436 S 0.0017298 : 0.0003330

o 0.0598308 x 0.0015718 3 0.0002903

i 0.0558409 H 0.0013432 U 0.0002748

n 0.0557900 C 0.0013031 Y 0.0002698

s 0.0503474 M 0.0012493 ! 0.0002676

r 0.0481530 B 0.0010938 K 0.0002504

h 0.0417651 W 0.0010060 4 0.0002433

l 0.0323259 ; 0.0009328 6 0.0002432

d 0.0308714 1 0.0008684 8 0.0002120

c 0.0233669 P 0.0008651 7 0.0001785

u 0.0213098 q 0.0008148 V 0.0001768

m 0.0189681 j 0.0007957 $ 0.0000970

f 0.0178324 ? 0.0007866 Q 0.0000404

p 0.0152116 0 0.0007471 / 0.0000395

g 0.0149384 z 0.0007426 * 0.0000290

w 0.0139324 F 0.0007144 & 0.0000278

y 0.0134342 D 0.0006837 % 0.0000246

b 0.0111069 N 0.0006365 Z 0.0000204

, 0.0098844 R 0.0006139 X 0.0000094

. 0.0093140 G 0.0005772 { 0.0000027

v 0.0077434 O 0.0005475 } 0.0000027

k 0.0049747 L 0.0005450 [0.0000003

" 0.0029641 E 0.0005306] 0.0000003

\n 0.0026255 J 0.0005041 + 0.0000002

T 0.0026089 2 0.0004392

- 0.0025810) 0.0004181

A binary tree for Huffman coding was constructed according

to the probability table of characters. The resulting binary tree

was then tabulated into Table. 3.

Table. 3. Predefined Huffman codes.

c Huffman code Length

A 110000000 9

B 1100000111 10

C 1101110110 10

D 0001100000 10

E 11000000111 11

F 0001100010 10

G 11001100010 11

H 1101110111 10

I 110000010 9

J 11000000110 11

K 011101011111 12

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

L 11000001101 11

M 1100110010 10

N 11001100111 11

O 11001100000 11

P 0111010010 10

Q 00011000010001 14

R 11001100011 11

S 011101000 9

T 110111001 9

U 110011000010 12

V 1100110011001 13

W 1100000010 10

X 11001100110001101 17

Y 110000011001 12

Z 1100110011000111 16

a 1001 4

b 1101111 7

c 00010 5

d 10100 5

e 001 3

f 110001 6

g 011110 6

h 11010 5

i 0110 4

j 0001101101 10

k 11001101 8

l 10101 5

m 110010 6

n 0101 4

o 1000 4

p 011111 6

q 0001101110 10

r 0000 4

s 0100 4

t 1011 4

u 110110 6

v 0111011 7

w 011100 6

x 000110101 9

y 000111 6

z 0001100011 10

0 0001101000 10

1 0111010011 10

2 00011011111 11

3 110011000011 12

4 011101011110 12

5 00011010010 11

6 011101011101 12

7 000110000101 12

8 011101011100 12

9 00011000011 11

' 011101010 9

" 00011001 8

\s 111 3

\n 110111010 9

+ 110011001100011001010 21

- 110111000 9

* 110011001100010 15

/ 00011000010000 14

. 1100001 7

, 1100111 7

? 0001101100 10

! 110000011000 12

: 110011001101 12

; 0111010110 10

(00011010011 11

) 00011011110 11

{ 110011001100011000 18

} 1100110011000110011 19

[11001100110001100100 20

] 110011001100011001011 21

$ 0001100001001 13

% 110011001100000 15

& 110011001100001 15

B. Time Complexity of Huffman Coding

An encoder and decoder were written in Python language

based on the predefined Huffman codes as shown in Table. 3.

The core algorithms to be shown do not include the conversion

of Huffman code from plaintext file to data structure in Python

with two reasons:

1. The concerned data size is the size of text instead of the

Huffman codes.

2. It could be assumed that the Huffman codes have been

implemented in the program since the codes were predefined.

For clarity and ease, the author omitted the time complexity of

assignment operations, focusing on string concatenation and

hash table access operations with each of them has the value of

𝑇𝑐𝑜𝑛𝑐𝑎𝑡(1) and 𝑇𝑎𝑐𝑐𝑒𝑠𝑠(1) respectively in time complexity.

To speed up the algorithm, the author used hash table as the

data structure for the binary tree, which is huffmancode in the

algorithms. The hash table’s key is character, and its value is the

corresponding Huffman code. Another hash table named

flipped_huffmancode was also made by flipping the key and

value in huffmancode.

Core algorithm of the encoder is as follows:
encodedtext = ''

for char in plaintext:

 encodedtext += huffmancode[char]

Let the variable plaintext be the string that is to be

converted into Huffman code and contains n characters. The first

line initializes the variable encodedtext as empty string, and

the variable would later hold the resulting Huffman code. The

second line is a loop that traverses each of the character in

plaintext. The third line contains two concerned operations,

hash table access in huffmancode[char] and string

concatenation in encodedtext + huffmancode[char]. The

algorithm’s complexity could be modelized into (1).

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

𝑇𝑒𝑛𝑐𝑜𝑑𝑒(𝑛) = ∑(𝑇𝑎𝑐𝑐𝑒𝑠𝑠(1) + 𝑇𝑐𝑜𝑛𝑐𝑎𝑡(1))

𝑛

𝑖=1

= 𝑛 ⋅ (𝑇𝑎𝑐𝑐𝑒𝑠𝑠(1) + 𝑇𝑐𝑜𝑛𝑐𝑎𝑡(1))

 (1)

As there is a constant 𝐶 = 𝑇𝑎𝑐𝑐𝑒𝑠𝑠(1) + 𝑇𝑐𝑜𝑛𝑐𝑎𝑡(1) , the

author could choose f(n) = n so that 𝑇𝑒𝑛𝑐𝑜𝑑𝑒(𝑛) ≤ 𝐶𝑓(𝑛) =

𝑂(𝑓(𝑛)) . Hence, the asymptotic time complexity of the

encoding algorithm is 𝑂(𝑛).

Core algorithm of the decoder is as follows:
plaintext = ''

sequence = ''

for bit in encodedtext:

 sequence += bit

 if sequence in flipped_huffmancode:

 char = flipped_huffmancode[sequence]

 sequence = ''

 plaintext += char

Let the variable encodedtext be the string of m bits that is

to be converted back into plaintext which would contain n

characters. The first and second line initializes the variable

plaintext and sequence as empty string, and the variable

would later hold the resulting plaintext and current bit sequence

respectively. The third line is a loop that traverses each of the bit

in encodedtext. There are two paths of operations inside the

loop: first, if there is no key of sequence, and second, if there

is key of sequence in flipped_huffmancode. The first path

contains only one concatenation operation, while the second

path contains two concatenation operations and one hash table

access. The algorithm’s complexity could be modelized into (2).

𝑇𝑑𝑒𝑐𝑜𝑑𝑒(n) = ∑(𝑇𝑎𝑐𝑐𝑒𝑠𝑠(1) + 2𝑇𝑐𝑜𝑛𝑐𝑎𝑡(1))

𝑛

𝑖=1

+ ∑(𝑇𝑐𝑜𝑛𝑐𝑎𝑡(1))

𝑚

𝑖=1

= 𝑛 ⋅ 𝑇𝑎𝑐𝑐𝑒𝑠𝑠(1) + (2𝑛 + 𝑚) 𝑇𝑐𝑜𝑛𝑐𝑎𝑡(1)

 (2)

Because each character’s Huffman code is at least 1 bit and at

most 21 bits, the relation between m and n could be written as

𝑛 ≤ 𝑚 ≤ 21𝑛 or 𝑚 = 𝐶𝑛 in which 1 ≤ 𝐶 ≤ 21. Then (2)

could be rewritten as (3).

𝑇𝑑𝑒𝑐𝑜𝑑𝑒(𝑛) = 𝑛 ⋅ (𝑇𝑎𝑐𝑐𝑒𝑠𝑠(1) + (2 + 𝐶) 𝑇𝑐𝑜𝑛𝑐𝑎𝑡(1))

 (3)

As there is a constant 𝐾 = 𝑇𝑎𝑐𝑐𝑒𝑠𝑠(1) + (2 + 𝐶) 𝑇𝑐𝑜𝑛𝑐𝑎𝑡(1),

the author could choose f(n) = n so that 𝑇𝑑𝑒𝑐𝑜𝑑𝑒(𝑛) ≤ 𝐾𝑓(𝑛) =

𝑂(𝑓(𝑛)) . Hence, the asymptotic time complexity of the

decoding algorithm is 𝑂(𝑛).

C. Compression Rate of Huffman Coding

To calculate the average compression rate in American

English text, the equations below are used assuming plaintext

characters are encoded in 8-bits ASCII with the data obtained

from Brown Corpus:

𝑚 = ∑ 𝑓

 (5)

𝑛 = ∑(𝑓 × 𝑙𝑒𝑛)

 (6)

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
8𝑚 − 𝑛

8𝑚
× 100%

=
8𝑚 − Σ(𝑓 × 𝑙𝑒𝑛)

8𝑚
× 100%

 (7)

with m is number of characters in plaintext, n is number of total

bits in Huffman codes obtained, f is frequency of each character

in Brown Corpus, and len is length of Huffman code for the

corresponding character.

By using Table. 1. and Table. 3., (6) yielded compression rate

of 0.4408, equivalent to 44.08% for average American English

text.

To validate the compression rate of Huffman coding with

predefined codes, four sample texts with varying length, from

short to long, were tested.

First, the author used a short tweet by John Cena (retrieved

from John Cena on Twitter/ Twitter on 13 December 2021), “Put

forth honest effort not just to do good but to be good.” From 472

bits (59 characters), the Huffman coding with predefined codes

compressed it to 263 bits or equivalently 44.28% compression

rate.

Second, the introduction part of this paper, “As data size is

increasing ... i.e., predefined codes.”, was tested with the

Huffman coding. Original length of the plaintext in ASCII bits

was 11816 bits (1447 characters), and the compression

successfully brought the number down to 6441 bits which

translated to 45.49% compression rate.

Third, the author used an article published by National

Geographic titled “To beat Omicron, the race is on to tweak

existing vaccines” (retrieved from To beat Omicron, the race is

on to tweak existing vaccines (nationalgeographic.com) on 13

December 2021) as the sample text with some changes from

non-ASCII characters into its similar counterpart in ASCII,

including the character ‘é’into ‘e’ and en dash into hyphen. From

the original 73112 bits (9139 characters), Huffman coding

encoded the text into 41513 bits, which translated to 43.22%

compression rate.

Fourth, the author used a story book titled “The Merry

Adventures of Robin Hood” (2006) (retrieved from

https://www.gutenberg.org/cache/epub/964/pg964.txt on 13

December 2021). The Huffman coding algorithm originally

failed because the text contained an unregistered ASCII

character ‘_’. Since the underscore character was most likely the

representation of italic font style, the character was deleted in

the test. From the original 4717672 bits (589709 characters), the

Huffman code encoded it into 2698327 bits, which translated to

42.80% compression rate.

From the four sample texts used, the compression rate was

observed relatively consistent in value, ranging from 42.80% to

45.49%.

https://twitter.com/JohnCena/status/1470058569081176067
https://www.nationalgeographic.com/science/article/to-beat-omicron-the-race-is-on-to-tweak-existing-vaccines
https://www.nationalgeographic.com/science/article/to-beat-omicron-the-race-is-on-to-tweak-existing-vaccines
https://www.gutenberg.org/cache/epub/964/pg964.txt

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

VI. CONCLUSION

From the study, it was understood that using Huffman coding

with predefined codes may reduce time complexity to O(n) in

both encoding and decoding steps. The usage of the algorithm

with predefined codes may compress any American English text

to about 42 – 46% given that the text does not contain any

undefined characters in the predefined codes.

VII. APPENDIX

The Python code used to obtain and analyze Brown Corpus is

as follows:

from nltk.corpus import brown

from sacremoses import MosesDetokenizer

from collections import Counter

mdetok = MosesDetokenizer()

text = ''

paras = brown.paras()

for para in paras:

 sents_array = [mdetok.detokenize

 (' '.join(sent).replace('``',

 '"').replace("''", '"').replace('`',

 "'").split(), return_str=True) for

 sent in para]

 paragraph = ' '.join(sents_array)

 text += paragraph + '\n'

print(Counter(text))

VIII. ACKNOWLEDGMENT

The author would like to express gratitude to family members

and friends who provided help supports during the writing of

this paper. Author would also like to thank Dra. Harlili, M.Sc.

as class lecturer and Dr. Ir. Rinaldi Munir, M.T. as head lecturer

for IF2120 Discrete Mathematics course for their spirit and

determination to educate their students with enthusiasm.

REFERENCES

[1] K. H. Rosen, Discrete Mathematics and Its Applications. New York:

McGraw-Hill, 2019, ch. 11.
[2] R. Munir, School of Electrical Engineering and Informatics, Bandung

Institute of Technology, lecture slide: Pohon, 2020.
[3] H. S. Wilf, Algorithm and Complexity (Internet Edition). Philadelphia:

University of Pennsylvania, 1994, ch. 0.

[4] R. Munir, School of Electrical Engineering and Informatics, Bandung
Institute of Technology, lecture slide: Kompleksitas Algoritma, 2020.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 13 Desember 2021

Wesly Giovano (13520071)

